PHYCEL U1003

  • NR1D1 controls skeletal muscle calcium homeostasis through myoregulin repression

    JCI Insight. 2022 Aug 2:e153584. doi: 10.1172/jci.insight.153584. Online ahead of print.

    ABSTRACT

    The sarcoplasmic reticulum (SR) plays an important role in calcium homeostasis. SR calcium mishandling is described in pathological conditions such as myopathies. Here, we investigated whether the nuclear receptor subfamily 1 group D member (NR1D1, also called REV-ERBα) regulates skeletal muscle SR calcium homeostasis. Our data demonstrate that NR1D1 deficiency in mice impairs SERCA-dependent SR calcium uptake. NR1D1 acts on calcium homeostasis by repressing the SERCA inhibitor myoregulin through direct binding to its promoter. Restoration of myoregulin counteracts the effects of NR1D1 overexpression on SR calcium content. Interestingly, myoblasts from Duchenne myopathy patients display lower NR1D1 expression, whereas pharmacological NR1D1 activation ameliorates SR calcium homeostasis, and improves muscle structure and function in dystrophic mdx/Utr+/- mice. Our findings demonstrate that NR1D1 regulates muscle SR calcium homeostasis, pointing to its therapeutic interest for mitigating myopathy.

    PMID:35917173 | DOI:10.1172/jci.insight.153584

  • TRPC1 channels regulate the activation of pancreatic stellate cells through ERK1/2 and SMAD2 pathways and perpetuate their pressure-mediated activation

    Cell Calcium. 2022 Jul 9;106:102621. doi: 10.1016/j.ceca.2022.102621. Online ahead of print.

    ABSTRACT

    Pancreatic stellate cell (PSC) activation is a major event occurring during pancreatic ductal adenocarcinoma (PDAC) development. Up to now mechanisms underlying their activation by mechanical cues such as the elevated tissue pressure in PDAC remain poorly understood. Here we investigate the role of one potential mechano-transducer, TRPC1 ion channel, in PSC activation. Using pre-activated human siTRPC1 and murine TRPC1-KO PSCs, we show that TRPC1 promotes αSMA (α-smooth muscle actin) expression, the main activation marker, in cooperation with the phosphorylated SMAD2, under normal and elevated pressure. Functional studies following TRPC1 silencing demonstrate the dual role of TRPC1 in the modulation of PSC proliferation and IL-6 secretion through the activation of ERK1/2 and SMAD2 pathways. Moreover, pressurization changes the mechanical behavior of PSCs by increasing their cellular stiffness and emitted traction forces in a TRPC1-dependent manner. In summary, these results point to a role of TRPC1 channels in sensing and transducing the characteristic mechanical properties of the PDAC microenvironment in PSCs.

    PMID:35905654 | DOI:10.1016/j.ceca.2022.102621

  • Ca<sup>2+</sup> Signalling and Hypoxia/Acidic Tumour Microenvironment Interplay in Tumour Progression

    Int J Mol Sci. 2022 Jul 2;23(13):7377. doi: 10.3390/ijms23137377.

    ABSTRACT

    Solid tumours are characterised by an altered microenvironment (TME) from the physicochemical point of view, displaying a highly hypoxic and acidic interstitial fluid. Hypoxia results from uncontrolled proliferation, aberrant vascularization and altered cancer cell metabolism. Tumour cellular apparatus adapts to hypoxia by altering its metabolism and behaviour, increasing its migratory and metastatic abilities by the acquisition of a mesenchymal phenotype and selection of aggressive tumour cell clones. Extracellular acidosis is considered a cancer hallmark, acting as a driver of cancer aggressiveness by promoting tumour metastasis and chemoresistance via the selection of more aggressive cell phenotypes, although the underlying mechanism is still not clear. In this context, Ca2+ channels represent good target candidates due to their ability to integrate signals from the TME. Ca2+ channels are pH and hypoxia sensors and alterations in Ca2+ homeostasis in cancer progression and vascularization have been extensively reported. In the present review, we present an up-to-date and critical view on Ca2+ permeable ion channels, with a major focus on TRPs, SOCs and PIEZO channels, which are modulated by tumour hypoxia and acidosis, as well as the consequent role of the altered Ca2+ signals on cancer progression hallmarks. We believe that a deeper comprehension of the Ca2+ signalling and acidic pH/hypoxia interplay will break new ground for the discovery of alternative and attractive therapeutic targets.

    PMID:35806388 | PMC:PMC9266881 | DOI:10.3390/ijms23137377

  • Involvement of ORAI1/SOCE in Human AML Cell Lines and Primary Cells According to ABCB1 Activity, LSC Compartment and Potential Resistance to Ara-C Exposure

    Int J Mol Sci. 2022 May 16;23(10):5555. doi: 10.3390/ijms23105555.

    ABSTRACT

    Acute myeloid leukemia (AML) is a hematological malignancy with a high risk of relapse. This issue is associated with the development of mechanisms leading to drug resistance that are not yet fully understood. In this context, we previously showed the clinical significance of the ATP binding cassette subfamily B-member 1 (ABCB1) in AML patients, namely its association with stemness markers and an overall worth prognosis. Calcium signaling dysregulations affect numerous cellular functions and are associated with the development of the hallmarks of cancer. However, in AML, calcium-dependent signaling pathways remain poorly investigated. With this study, we show the involvement of the ORAI1 calcium channel in store-operated calcium entry (SOCE), the main calcium entry pathway in non-excitable cells, in two representative human AML cell lines (KG1 and U937) and in primary cells isolated from patients. Moreover, our data suggest that in these models, SOCE varies according to the differentiation status, ABCB1 activity level and leukemic stem cell (LSC) proportion. Finally, we present evidence that ORAI1 expression and SOCE amplitude are modulated during the establishment of an apoptosis resistance phenotype elicited by the chemotherapeutic drug Ara-C. Our results therefore suggest ORAI1/SOCE as potential markers of AML progression and drug resistance apparition.

    PMID:35628366 | PMC:PMC9141756 | DOI:10.3390/ijms23105555

  • TRPM8-Rap1A Interaction Sites as Critical Determinants for Adhesion and Migration of Prostate and Other Epithelial Cancer Cells

    Cancers (Basel). 2022 Apr 30;14(9):2261. doi: 10.3390/cancers14092261.

    ABSTRACT

    Emerging evidence indicates that the TRPM8 channel plays an important role in prostate cancer (PCa) progression, by impairing the motility of these cancer cells. Here, we reveal a novel facet of PCa motility control via direct protein-protein interaction (PPI) of the channel with the small GTPase Rap1A. The functional interaction of the two proteins was assessed by active Rap1 pull-down assays and live-cell imaging experiments. Molecular modeling analysis allowed the identification of four putative residues involved in TRPM8-Rap1A interaction. Point mutations of these sites impaired PPI as shown by GST-pull-down, co-immunoprecipitation, and PLA experiments and revealed their key functional role in the adhesion and migration of PC3 prostate cancer cells. More precisely, TRPM8 inhibits cell migration and adhesion by trapping Rap1A in its GDP-bound inactive form, thus preventing its activation at the plasma membrane. In particular, residues E207 and Y240 in the sequence of TRPM8 and Y32 in that of Rap1A are critical for the interaction between the two proteins not only in PC3 cells but also in cervical (HeLa) and breast (MCF-7) cancer cells. This study deepens our knowledge of the mechanism through which TRPM8 would exert a protective role in cancer progression and provides new insights into the possible use of TRPM8 as a new therapeutic target in cancer treatment.

    PMID:35565390 | PMC:PMC9102551 | DOI:10.3390/cancers14092261

  • TRPC3 shapes the ER-mitochondria Ca<sup>2+</sup> transfer characterizing tumour-promoting senescence

    Nat Commun. 2022 Feb 17;13(1):956. doi: 10.1038/s41467-022-28597-x.

    ABSTRACT

    Cellular senescence is implicated in a great number of diseases including cancer. Although alterations in mitochondrial metabolism were reported as senescence drivers, the underlying mechanisms remain elusive. We report the mechanism altering mitochondrial function and OXPHOS in stress-induced senescent fibroblasts. We demonstrate that TRPC3 protein, acting as a controller of mitochondrial Ca2+ load via negative regulation of IP3 receptor-mediated Ca2+ release, is down regulated in senescence regardless of the type of senescence inducer. This remodelling promotes cytosolic/mitochondrial Ca2+ oscillations and elevates mitochondrial Ca2+ load, mitochondrial oxygen consumption rate and oxidative phosphorylation. Re-expression of TRPC3 in senescent cells diminishes mitochondrial Ca2+ load and promotes escape from OIS-induced senescence. Cellular senescence evoked by TRPC3 downregulation in stromal cells displays a proinflammatory and tumour-promoting secretome that encourages cancer epithelial cell proliferation and tumour growth in vivo. Altogether, our results unravel the mechanism contributing to pro-tumour behaviour of senescent cells.

    PMID:35177596 | PMC:PMC8854551 | DOI:10.1038/s41467-022-28597-x

  • Put in a "Ca<sup>2+</sup>ll" to Acute Myeloid Leukemia

    Cells. 2022 Feb 4;11(3):543. doi: 10.3390/cells11030543.

    ABSTRACT

    Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic aberrations in myeloid primitive cells (blasts) which lead to their defective maturation/function and their proliferation in the bone marrow (BM) and blood of affected individuals. Current intensive chemotherapy protocols result in complete remission in 50% to 80% of AML patients depending on their age and the AML type involved. While alterations in calcium signaling have been extensively studied in solid tumors, little is known about the role of calcium in most hematologic malignancies, including AML. Our purpose with this review is to raise awareness about this issue and to present (i) the role of calcium signaling in AML cell proliferation and differentiation and in the quiescence of hematopoietic stem cells; (ii) the interplay between mitochondria, metabolism, and oxidative stress; (iii) the effect of the BM microenvironment on AML cell fate; and finally (iv) the mechanism by which chemotherapeutic treatments modify calcium homeostasis in AML cells.

    PMID:35159351 | PMC:PMC8834247 | DOI:10.3390/cells11030543

  • Pairing cells of different sizes in a microfluidic device for immunological synapse monitoring

    Lab Chip. 2022 Mar 1;22(5):908-920. doi: 10.1039/d1lc01156a.

    ABSTRACT

    Analyzing cell-cell interaction is essential to investigate how immune cells function. Elegant designs have been demonstrated to study lymphocytes and their interaction partners. However, these devices have been targeting cells of similar dimensions. T lymphocytes are smaller, more deformable, and more sensitive to pressure than many cells. This work aims to fill the gap of a method for pairing cells with different dimensions. The developed method uses hydrodynamic flow focusing in the z-direction for on-site modulation of effective channel height to capture smaller cells as single cells. Due to immune cells' sensitivity to pressure, the proposed method provides a stable system without any change in flow conditions at the analysis area throughout experiments. Paired live cells have their activities analyzed with calcium imaging at the immunological synapse formed under a controlled environment. The method is demonstrated with primary human T lymphocytes, acute myeloid leukemia (AML) cell lines, and primary AML blasts.

    PMID:35098952 | DOI:10.1039/d1lc01156a

  • TRPM7 Ion Channel: Oncogenic Roles and Therapeutic Potential in Breast Cancer

    Cancers (Basel). 2021 Dec 16;13(24):6322. doi: 10.3390/cancers13246322.

    ABSTRACT

    The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a divalent cations permeant channel but also has intrinsic serine/threonine kinase activity. It is ubiquitously expressed in normal tissues and studies have indicated that it participates in important physiological and pharmacological processes through its channel-kinase activity, such as calcium/magnesium homeostasis, phosphorylation of proteins involved in embryogenesis or the cellular process. Accumulating evidence has shown that TRPM7 is overexpressed in human pathologies including breast cancer. Breast cancer is the second leading cause of cancer death in women with an incidence rate increase of around 0.5% per year since 2004. The overexpression of TRPM7 may be associated with a poor prognosis in breast cancer patients, so more efforts are needed to research a new therapeutic target. TRPM7 regulates the levels of Ca2+, which can alter the signaling pathways involved in survival, cell cycle progression, proliferation, growth, migration, invasion, epithelial-mesenchymal transition and thus determines cell behavior, promoting tumor development. This work provides a complete overview of the TRPM7 ion channel and its main involvements in breast cancer. Special consideration is given to the modulation of the channel as a potential target in breast cancer treatment by inhibition of proliferation, migration and invasion. Taken together, these data suggest the potential exploitation of TRPM7 channel-kinase as a therapeutic target and a diagnostic biomarker.

    PMID:34944940 | PMC:PMC8699295 | DOI:10.3390/cancers13246322

  • 3-phosphoinositide-dependent protein kinase 1 (PDK1) mediates crosstalk between Src and Akt pathways in MET receptor signaling

    FEBS Lett. 2021 Nov;595(21):2655-2664. doi: 10.1002/1873-3468.14195. Epub 2021 Oct 10.

    ABSTRACT

    The high-affinity tyrosine kinase receptor MET plays a pivotal role in several facets of cell regulation. Although its mitogenic effect is well documented, some aspects of connection patterns between signaling pathways involved in cell cycle progression remain to be deciphered. We have used a tractable heterologous expression system, the Xenopus oocyte, to detect connections between distinct MET signaling cascades involved in G2/M progression. Our results reveal that Src acts as an adapter via its SH2 domain to recruit 3-phosphoinositide-dependent protein kinase 1 (PDK1) to the MET signaling complex leading to Akt phosphorylation. These data define an original crosstalk between Src and Akt signaling pathways that contributes to MET-induced entry into the M phase, and deserves further investigation in pathologies harboring deregulation of this receptor.

    PMID:34551132 | DOI:10.1002/1873-3468.14195

  • Editorial: Mechanisms of Vessel Development: From a Primitive Draft to a Mature Vasculature

    Front Physiol. 2021 Jul 16;12:725531. doi: 10.3389/fphys.2021.725531. eCollection 2021.

    NO ABSTRACT

    PMID:34335315 | PMC:PMC8322619 | DOI:10.3389/fphys.2021.725531

  • Ca<sup>2+</sup> Signaling and Its Potential Targeting in Pancreatic Ductal Carcinoma

    Cancers (Basel). 2021 Jun 21;13(12):3085. doi: 10.3390/cancers13123085.

    ABSTRACT

    Pancreatic cancer (PC) is a major cause of cancer-associated mortality in Western countries (and estimated to be the second cause of cancer deaths by 2030). The main form of PC is pancreatic adenocarcinoma, which is the fourth most common cause of cancer-related death, and this situation has remained virtually unchanged for several decades. Pancreatic ductal adenocarcinoma (PDAC) is inherently linked to the unique physiology and microenvironment of the exocrine pancreas, such as pH, mechanical stress, and hypoxia. Of them, calcium (Ca2+) signals, being pivotal molecular devices in sensing and integrating signals from the microenvironment, are emerging to be particularly relevant in cancer. Mutations or aberrant expression of key proteins that control Ca2+ levels can cause deregulation of Ca2+-dependent effectors that control signaling pathways determining the cells' behavior in a way that promotes pathophysiological cancer hallmarks, such as enhanced proliferation, survival and invasion. So far, it is essentially unknown how the cancer-associated Ca2+ signaling is regulated within the characteristic landscape of PDAC. This work provides a complete overview of the Ca2+ signaling and its main players in PDAC. Special consideration is given to the Ca2+ signaling as a potential target in PDAC treatment and its role in drug resistance.

    PMID:34205590 | PMC:PMC8235326 | DOI:10.3390/cancers13123085

  • Orai1 Channel Regulates Human-Activated Pancreatic Stellate Cell Proliferation and TGF<sub>β1</sub> Secretion through the AKT Signaling Pathway

    Cancers (Basel). 2021 May 15;13(10):2395. doi: 10.3390/cancers13102395.

    ABSTRACT

    Activated pancreatic stellate cells (aPSCs), the crucial mediator of pancreatic desmoplasia, are characterized, among others, by high proliferative potential and abundant transforming growth factor β1 (TGFβ1) secretion. Over the past years, the involvement of Ca2+ channels in PSC pathophysiology has attracted great interest in pancreatic cancer research. We, thus, aimed to investigate the role of the Orai1 Ca2+ channel in these two PSC activation processes. Using the siRNA approach, we invalided Orai1 expression and assessed the channel functionality by Ca2+ imaging, the effect on aPSC proliferation, and TGFβ1 secretion. We demonstrated the functional expression of the Orai1 channel in human aPSCs and its implication in the store-operated Ca2+ entry (SOCE). Orai1 silencing led to a decrease in aPSC proliferation, TGFβ1 secretion, and AKT activation. Interestingly, TGFβ1 induced a higher SOCE response by increasing Orai1 mRNAs and proteins and promoted both AKT phosphorylation and cell proliferation, abolished by Orai1 silencing. Together, our results highlight the role of Orai1-mediated Ca2+ entry in human aPSC pathophysiology by controlling cell proliferation and TGFβ1 secretion through the AKT signaling pathway. Moreover, we showed a TGFβ1-induced autocrine positive feedback loop by promoting the Orai1/AKT-dependent proliferation via the stimulation of Orai1 expression and function.

    PMID:34063470 | PMC:PMC8156432 | DOI:10.3390/cancers13102395

  • TRP Channels in Brain Tumors

    Front Cell Dev Biol. 2021 Apr 13;9:617801. doi: 10.3389/fcell.2021.617801. eCollection 2021.

    ABSTRACT

    Malignant glioma including glioblastoma (GBM) is the most common group of primary brain tumors. Despite standard optimized treatment consisting of extensive resection followed by radiotherapy/concomitant and adjuvant therapy, GBM remains one of the most aggressive human cancers. GBM is a typical example of intra-heterogeneity modeled by different micro-environmental situations, one of the main causes of resistance to conventional treatments. The resistance to treatment is associated with angiogenesis, hypoxic and necrotic tumor areas while heterogeneity would accumulate during glioma cell invasion, supporting recurrence. These complex mechanisms require a focus on potential new molecular actors to consider new treatment options for gliomas. Among emerging and underexplored targets, transient receptor potential (TRP) channels belonging to a superfamily of non-selective cation channels which play critical roles in the responses to a number of external stimuli from the external environment were found to be related to cancer development, including glioma. Here, we discuss the potential as biological markers of diagnosis and prognosis of TRPC6, TRPM8, TRPV4, or TRPV1/V2 being associated with glioma patient overall survival. TRPs-inducing common or distinct mechanisms associated with their Ca2+-channel permeability and/or kinase function were detailed as involving miRNA or secondary effector signaling cascades in turn controlling proliferation, cell cycle, apoptotic pathways, DNA repair, resistance to treatment as well as migration/invasion. These recent observations of the key role played by TRPs such as TRPC6 in GBM growth and invasiveness, TRPV2 in proliferation and glioma-stem cell differentiation and TRPM2 as channel carriers of cytotoxic chemotherapy within glioma cells, should offer new directions for innovation in treatment strategies of high-grade glioma as GBM to overcome high resistance and recurrence.

    PMID:33928077 | PMC:PMC8076903 | DOI:10.3389/fcell.2021.617801

  • ORAI3 silencing alters cell proliferation and promotes mitotic catastrophe and apoptosis in pancreatic adenocarcinoma

    Biochim Biophys Acta Mol Cell Res. 2021 Jun;1868(7):119023. doi: 10.1016/j.bbamcr.2021.119023. Epub 2021 Mar 30.

    ABSTRACT

    Changes in cytosolic free Ca2+ concentration play a central role in many fundamental cellular processes including muscle contraction, neurotransmission, cell proliferation, differentiation, gene transcription and cell death. Many of these processes are known to be regulated by store-operated calcium channels (SOCs), among which ORAI1 is the most studied in cancer cells, leaving the role of other ORAI channels yet inadequately addressed. Here we demonstrate that ORAI3 channels are expressed in both normal (HPDE) and pancreatic ductal adenocarcinoma (PDAC) cell lines, where they form functional channels, their knockdown affecting store operated calcium entry (SOCE). More specifically, ORAI3 silencing increased SOCE in PDAC cell lines, while decreasing SOCE in normal pancreatic cell line. We also show the role of ORAI3 in proliferation, cell cycle, viability, mitotic catastrophe and cell death. Finally, we demonstrate that ORAI3 silencing impairs pancreatic tumor growth and induces cell death in vivo, suggesting that ORAI3 could represent a potential therapeutic target in PDAC treatment.

    PMID:33798603 | DOI:10.1016/j.bbamcr.2021.119023